ЕГЭ. Задание В14.



Характеристика задания. Задание на вычисление с помощью производной точек экстремума данной функции или наибольшего (наименьшего) значения данной функции на данном отрезке. Производная в некоторых задачах может быть задана графиком.
Комментарий.Решение задачи связано с нахождением при помощи производной точек минимума (максимума) заданной функции или её наименьшего (наибольшего) значения на отрезке. При этом возможны два основных случая: либо производная задана графиком, либо функция задана формулой. Если производная задана графиком, то на тех промежутках, где он расположен выше оси абсцисс (т.е. производная положительна), функция возрастает; на тех промежутках, где он расположен ниже оси абсцисс (т.е. производная отрицательна), функция убывает, точки, в которых график производной пересекает ось абсцисс (т.е. точки, в которых производная меняет знак), являются точками экстремума. Если функция задана формулой, то при нахождении наибольшего (наименьшего) значений функции на отрезке можно использовать стандартный алгоритм.

Комментариев нет:

Отправить комментарий